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ABSTRACT

Impedances of Ni electrodes vary with many factors

including voltage, cycling, and manufacturer. However,

results from Ni/H2 cells being tested for Space Station
Freedom show that consistent results are obtained within a

group of cells from the same manufacturer if the cells are

cycled and stored in the same manner.

Impedance changes with storage and cycling are being

investigated. Impedances are low in the fully charged state

but rise abruptly by several orders of magnitude at a voltage

corresponding to a very low state-of-charge. After standing

for several months, this increase occurred at a higher

voltage, consistent with an increase in structural order

during storage which hinders diffusion of protons and reduces

high rate capacity.

Early measurements on the effects of cycling on Ni/H 2
cells being tested for Space Station Freedom show differences
between cells from different manufacturers.

INTRODUCTION

Impedances of Ni electrodes have been studied by many investigators
(I-4). It has been found that the impedances increase by several orders

of magnitude as the voltage decreases. Results from different investiga-
tors are similar qualitatively but not quantitatively. The question

arises as to what conditions are required to obtain reproducible measure-

ments. As part of our studies on Ni electrodes for space batteries, we

have done measurements on a large group of electrodes from four different

manufacturers and have found that the impedances of electrodes from any

one manufacturer at a given voltage are reasonably reproducible, but there

are major differences between manufacturers (5,6). We have been following

the impedances of cells being cycled for Space Station Freedom and find
the same results, that impedances of cells from a given manufacturer that

have undergone the same conditions of storage and cycling have very
similar impedances, but cells from different manufacturers have different

impedance characteristics.



We have recently been examining the changes in impedance of elec-
trodes that have been stored for up to a year. Since capacity losses are

commonly observed upon storage, it is not surprising to find changes in
impedance upon storage. In the present study we look at changes after
standing for several months followed by two charge-discharge cycles. The
nature of these changes are used to postulate a model for the discharge
behavior that can explain the differences between new and stored elec-
trodes and between electrodes from different manufacturers.

Impedances of cells being tested for Space Station Freedom are also
being followed as a function of cycle life. These have been studied at
only a few voltages due to the limited time available for investigation
of these cells during life cycle testing. In order to obtain the maximum
information from these measurements, the voltages chosen were selected so
that they were in the range where the largest differences in impedance
occur when the voltage is changed and where the largest differences are
seen between electrodes from different manufacturers.

The impedances of two Ni/Cd cells have also been followed after
short-circuited storage for five years followed by Low Earth Orbit (LEO)

cycling.

EXPERIMENTAL

Impedances were measured using a Solartron 1250 Frequency Response
Analyzer and either a PAR 273 Potentiostat or a Solartron 1286 Electro-
chemical Interface. This instrumentation measures impedance by analyzing
a small At signal which is superimposed on the desired DC voltage. The
use of this technique, rather than the use of a current step during
discharge, allows more precise control of the voltage at which measure-
ments are taken, especially at the low voltages where the greatest changes
in impedance and the largest differences between different electrodes are
found. Measurements were made from 1585 or i000 Hz to 0.0025 or 0.001Hz
(~6 decades).

All measurements were made after the cell or electrode had been

fully charged, then discharged to the desired voltage. If multiple
measurements were made, these were started at the highest voltage with
subsequent measurements taken at progressively lower voltages.

Single electrode measurements were made with a 3.5 inch diameter
electrode (42.9 cm) manufactured for a Ni/H 2 flightweight cell. Elec-
trodes were held at the measurement voltage for some time in order to
reach a quasi-equilibrium state, in most cases until the current fell
below I0 mA. A I mV RMS AC signal was then superimposed on the DC

potential. Recent measurements were made using ZPLOT software (Scribner
Associates, Charlottesville, VA) to control the instruments and plot the
data.



The flightweight Ni/H 2 cells being tested at Lewis Research Center
for Space Station Freedom are from three domestic manufacturers. Most of
the cells are 65 AH capacity (a few are 50 AH cells) and have 3.5 inch
diameter electrodes, Measurements were made at 1.200 or 1.275 V after

equilibration at the measurement voltage until the DC current fell below
I00 mA. In a few instances (due to the limited time available for
measurements on these cells) the current was somewhat larger.

The choice of potentials for the cell measurements was made on the

basis of earlier measurements with individual electrodes using a Hg/HgO

reference electrode. At high voltages, (0.430 V to about 0.330 V), the

impedances are low and there are negligible differences from one manu-

facturer to another but the differences become significant in the voltage

range from 0.330 to 0.170 V. At lower voltages the impedances are higher
but there are smaller differences between electrodes from different manu-

facturers. There is also much more scatter, and a much longer time is

required to reach equilibration. Thus the voltage range from about 0.330

V to 0.170 V vs the Hg/HgO electrode is the region in which useful

comparisons can be made.
#

Since there is no separate reference electrode in sealed cells,

whether flightweight or boilerplate, the hydrogen electrode in Ni/H 2 cells
and the Cd electrode in Ni/Cd cells must serve as the reference electrode

in addition to acting as the counter electrode. In Ni/H2 cells the

impedance of the hydrogen electrode is almost always small compared to

that of the nickel electrode so that use of the hydrogen electrode as

reference is valid, and the impedance of the cell is essentially that of

the nickel electrode (7). However, if we want to compare the results in

Ni/H2 cells to those for single electrodes measured against the Hg/HgO

reference electrode, we must determine the relationship of the cell

potential to the potential of the individual electrode against the Hg/HgO

potential.

The potential of the Hg/HgO electrode vs the hydrogen electrode at

i atm pressure will be +0.926 V in a solution of the same KOH concentra-

tion. However, in the Ni/H 2 cell the hydrogen pressure varies over the

course of the charge-discharge cycle, and therefore the potential of the

hydrogen electrode will vary. A typical hydrogen pressure for a new Ni/H 2

cell is about 50 PSIG (4.40 arm) in the discharged state. (The pressure

is about 600 PSIG in the fully charged condition). Since we are working

in the voltage range where the electrode is almost fully discharged, we

can assume that the pressure is about 50 PSIG. (As the cells age, the

hydrogen pressure increases, and correction must also be made for this).

For a new cell the correction to the hydrogen electrode voltage and the
cell voltage due to the increased hydrogen pressure is about 19 mY. Thus

the voltage of the Hg/HgO electrode under these conditions is +0.945 V vs

the H2 electrode. Initial impedance measurements of the Ni/H2 cells were

taken at 1.275 V. This corresponds to a voltage of +0.330 V for the Ni

electrode vs Hg/HgO, at the higher end of the voltage range of interest.

However, it was found that measurements at lower voltages gave greater
differences between cells from the different manufacturers and KOH



concentrations, so subsequent measurementswere made at 1.200 V. This
corresponds to a voltage of +0.255 V for the Ni electrode vs Hg/HgO.
Measurementsat lower voltages than this required a longer equilibration
time. The time schedule for cycling of these cells did not allow this.

In Ni/Cd cells the relationship of cell voltage to the voltage of
the Hg/HgOelectrode is slightly different than in the Ni/H2 cell. The
Hg/HgOelectrode potential is +0.907 V vs the Cd electrode in a solution
of the sameKOHconcentration (8), 38 mVlower than the H2electrode at 50
PSIG. Thus a Ni/Cd cell voltage of 1.200 V corresponds to a voltage of
+0.293 V for the Ni electrode vs the Hg/HgOelectrode. This is equivalent
to a Ni/H2 cell voltage of 1.238 V. A Ni/Cd cell voltage of 1.162
corresponds to a voltage of +0.255 for the Ni electrode vs Hg/HgOand thus
is equivalent to a cell voltage of 1.200 V for a Ni/H2 cell. (We are
assuming that the Cd electrode contains excess Cd so that even at these
low states-of-charge the equilibrium potential of the Cd electrode is
close to that of a reversible Cd/Cd(OH)2 electrode). The relationships
between the cell voltages and the half-cell voltages used in the measure-
ments are shown in Table I.

An additional complication in Ni/Cd cells is that the impedanceof
the Cd electrode is not always negligible, unlike the situation with the
hydrogen electrode in the Ni/H2 cells. In order to separate the total cell
impedanceinto the contributions from the individual electrodes, the case
can be used as a reference electrode (7). This has been shownto be valid
since the voltage of the case is stable over the relatively short period
of time required to make the impedancemeasurements. The voltage of the
case is measuredwith respect to the individual electrodes at the cell
voltage of interest (in this case 1.200 V), and this voltage is maintained
between the case and the individual electrode during the impedance
measurements. The impedances of the complete Ni/Cd cells using the Cd
electrode as a reference and for the individual electrodes using the case
as a reference will be given as functions of cycle life.

During an earlier study of loss of capacity as a function of
manufacturer and storage conditions, impedances of electrodes from four

companies had been measured at 0.200 V and 0.400 V after 10-12 cycles
(5,6). The electrodes had been stored for a month under various condi-

tions and recycled 10-12 times for capacity measurements. The impedance

measurements were repeated at 0.200 V after the capacity determination and

were quite close to the initial measurements. From this we conclude that
10-12 cycles is adequate under most conditions to bring the electrodes

back to the initial impedance after short-term storage.

One of these electrodes (Gates Battery Corporation) was then used

for more detailed measurements of impedance as a function of voltage (4).

The measurements were then repeated after the electrode had been stored

for four months at an OCV of about 0.200 V, charged, discharged and

recharged again before measurements were taken. These measurements were

repeated again after eight more months of storage.



Measurements on two flightweight Ni/Cd 50 AH cells were made after

the ceils had been stored short-circuited for about five years (7). The

cells were then cycled under a LEO regime at 20_ DOD. The impedances of

the complete cells and of the individual electrodes using the cell case
as a reference electrode were followed as a function of cycle life.

All complex plane and Bode plots presented here are the actual data
taken from the individual cell or electrode but the parallel (or kinetic)

resistances and Warburg slopes for the individual electrode have been

normalized to a unit area basis.

Analysis of the impedance has so far been done using the simple
circuit shown in Figure la. A typical complex plane plot for a Ni/H 2 cell
is shown in Figure Ib, indicating that this circuit can serve as a good
first approximation. The parameters obtained from the analyses are the
ohmic resistance, parallel (kinetic) resistance, and the slope of the
WarburQ curve. For a planar electrode this slope is proportional to
I/CD I/_where C is the concentration of diffusing species and D is the
diffusion coefficient (9). For the porous electrodes studied here, this
relationship is no longer followed exactly, but we can use the slope as
a qualitative indication of the diffusion resistance. A higher slope
signifies a slower rate of diffusion and a low slope a more rapid rate of
diffusion.

RESULTS AND DISCUSSION

Table II shows data for measurements on cells from two manufacturers

being tested for the Space Station after the initial acceptance testing.
It can be seen that cells from each manufacturer give consistent results

when measured at the same voltage. (Impedances of the cells upon receipt

were much higher and there was a great deal of scatter, showing that a

certain amount of cycling is required to bring the cells to a reproducible

state, in agreement with widespread experience with Ni/H 2 and Ni/Cd cells).

These results give us confidence in the reproducibility and validity of
the measurements. It is not known whether the variations from cell to

cell within each group are meaningful. The cells are now being life-

tested under a LEO regime of 35_ DOD with several percent overcharge, and

the results of these tests will be analyzed to determine if these indi-
vidual variations can be related to cycle life or whether they represent

experimental uncertainty. In addition to demonstrating the reproduci-

bility of results, these data also illustrate the differences between
cells of different manufacture.

The impedance data for the new Gates electrode as a function of

voltage are shown in Figs. 2 and 3. Bode plots are shown since the

impedance changes by several orders of magnitude when the electrode goes

from the fully charged to the short-circuited condition. The impedances

are low at high voltages but rise sharply at low states-of-charge. An

interesting feature is the decrease in impedance at very low voltages
(illustrated by the curve at the short-circuited voltage of -0.926 V).



The reason for this is not clear. This phenomenon occurs at voltages

below the potential at which Ni{OH)2 can thermodynamically be reduced to
Ni. This reaction is known to occur very slowly. If there is a layer of

higher resistance material adjacent to the metal sinter, as has been

proposed by some workers (10), it is possible that the reduction in

impedance at very low voltages is due to reduction of this layer to Ni
metal, or alternatively, to reduction of a small quantity of Ni ions to

Ni atoms throughout the active material causing an increase in conduc-

tivity. It also may be related to the cobalt content of the active

material (all the electrodes and cells studied contain cobalt additive).

This interesting phenomenon is being explored further.

After the electrode was stored for four months, the experiment was

repeated. The high voltage impedances were quite similar to the earlier

values. However, as the voltage was lowered, the increase in impedance

occurred at a much higher voltage than in the earlier measurements.

Figures 4 and 5 show how the parallel (kinetic) resistances and Warburg

slopes change with voltage for the two sets of measurements. The sharp

rise in these parameters took place about 120 mV higher than in the

earlier measurements. These changes occur within the same voltage range

(0.330-0.170 V vs Hg/HgO) where we had previously observed differences in

impedance between different manufacturers and with different KOH concen-

trations. Further storage of eight months produced only slight additional

changes.

The measurements give support to proposals of earlier workers (I,11)
that the discharge reaction is controlled by the solid state diffusion of

protons through the active material. It can be seen that as the voltage

is lowered, the parallel (or kinetic) resistance is low and fairly

constant until equilibrium voltages are reached that correspond to very

low states-of-charge. Up to this point there does not seem to be any

significant potential dependence of the parallel resistance. If this

resistance is limited by kinetic factors, one would expect a substantial

change with voltage. The resistance then rise s by over three orders of

magnitude over a small potential range. The Warburg slope, which is a
measure of the resistance to diffusion in the active material, rises at

about the same voltage as the parallel resistance. This similar behavior,

combined with the minimal changes in the parallel resistance with voltage

until the transition voltage is reached, suggests that the discharge
reaction is diffusion controlled rather than limited by a charge transfer

process.

The changes in the impedance upon storage may also be related to

increased resistance to proton diffusion. The active material is known

to have a layered structure. Empirical formulas for battery-active
materials include a substantial amount of water (12), and it is known that

this is essential to the operation of the Ni(OH)2 electrode. There are
several theories as to how this is incorporated into the lattice. It has

been proposed that the water is intercalated within the layers (13). A

second theory which can also account for the empirical formulas observed
is that there is a substantial fraction of vacancies in the Ni lattice



sites (14). Regardless of the nature of the included water, the increases
in impedance produced by storage may be due to increased ordering within
the active material upon standing so that diffusion of protons to the
charge transfer sites is reduced. This could be caused by gradual
rearrangement of the lattice which could either reduce the number of Ni
vacancies within the lattice, or else increase the degree of stacking
order within the layered structure leading to a reduction in the amount
of interstitial water.

Electrodes that have been stored for long periods of time lose

capacity and must be cycled a number of times to restore it. This fact,
in conjunction with the changes in impedance with storage, suggests a
possible model for the discharge process.

Let us consider a discharge at constant current at a moderately high
rate. If we refer to Figures 4 and 5, at high voltages (high states-of-
charge), the polarization will be small since the kinetic resistance and
Warburg slope (the diffusion parameter) are low, and substantial current
densities can be maintained.

As the electrode is initially discharged, the Warburg slope will
gradually increase, and the diffusion polarization will likewise increase
slowly. The slope will then increase more rapidly as the electrode
becomes progressively discharged, and the diffusion polarization will
increase more rapidly. The kinetic resistance does not increase
appreciably until the point at which it rises abruptly, thus the kinetic
polarization will be small up to this point. When the voltage reaches
this point, the kinetic polarization will increase by several orders of
magnitude, the voltage will fall below the usable range, and no more
capacity can be withdrawn unless the discharge current is decreased. Thus
the high rate capacity that can be withdrawn from a cell will be
determined largely by the voltage at which the impedance parameters
increase in magnitude and the magnitude of this increase.

Electrodes that have been stored for a long time are known to have
a smaller high rate capacity than originally. We see that with stored
electrodes the rise in Warburg slope and kinetic resistance occurs at a
higher potential than before the storage. Thus the large increase in
polarization takes place at a higher potential than for electrodes that
have not been stored, and the available capacity will be less. Electrodes
from different manufacturers will have differing high rate capabilities
depending on the voltage at which the increase in parameters takes place
and the magnitude of the changes in the parameters at this point. We plan
to carry out more quantitative modeling of the discharge in terms of the
impedance parameters.

Changes of impedance with cycling are also being studied, and
measurements have been taken of the impedances of the cells undergoing
test for the Space Station up to approximately 500 cycles. Again there
are differences between cells from different manufacturers. Parameters
are listed in Table III for cells from two companies. For the cells from



Manufacturer I, the kinetic resistance fell with cycling while the slope
remained the same. For the second manufacturer, both parameters increased
with cycling. Further data are being taken as the cycling proceeds and
attempts will be made to correlate these data with performance and cycle
life.

Parallel (kinetic) resistances and Warburg slopes for the two 50 AH

Ni/Cd batteries that were stored for approximately 5 years are plotted in

Figures 6-8. Since the impedances of these ceils were not measured when

new, no conclusions can be drawn about the effects of storage, but the
data are included to show how the parameters change with cycling. The

measurements were made at a cell voltage of 1.200 V which corresponds to

a voltage of 0.293 V for the Ni electrode vs Hg/HgO. The initial

impedance parameters seem to be high, by comparison with measurements on

single electrodes from the same manufacturer. The parameters change very

slowly with cycling. It can be seen that the Cd electrode impedance

reaches a reasonably steady value after about 500 cycles but the

impedances of the Ni electrode still seem to be decreasing after 1500

cycles, the latest point at which data have been taken. We plan to obtain

some new Ni/Cd cells and measure their impedances as functions of voltage.

Some will be cycled immediately and others will be cycled after storage

for various lengths of time. The impedances will be followed as functions

of cycle life. This will allow us to separate the effects of storage from

the effects of cycling.

Analysis of the data using a more complex electrical circuit is

under way. Further experiments to obtain a more complete data base are

being carried out.

SUMMARY

The consistency of impedance measurements within each group of
flightweight Ni/H2 cells being tested for Space Station Freedom confirms

that impedance measurements are reproducible provided that the same

conditions of cycling and storage are maintained. However, electrodes and

cells from different manufacturers vary widely, even with the same cycling
and storage conditions.

Changes in impedance with storage were examined using a commercial

Ni electrode. After the electrode was conditioned, measurements were made

from the fully charged state to the short-circuited state. Kinetic

resistances and Warburg coefficients rose abruptly by several orders of

magnitude at about 0.20 V vs Hg/HgO. After standing for four months,

measurements were repeated after cycling twice. The impedance parameters

rose sharply at about 0.32 V, an increase of about 0.12 V. Further

storage for eight months produced only slight additional changes. It is

postulated that the changes are due to an increase in structural order

during storage so that diffusion of protons through the active material
is hindered. A model for the discharge reaction is postulated which could



account for the variations in capacity between new and stored electrodes
and for electrodes from different manufacturers.

Two Ni/Cd cells which were stored short-circuited for five years

were also examined. Impedance parameters fell slowly with cycling.

Early results from two types of cells being cycled for Space Station
show that there are substantial differences in how cells from different

manufacturers behave upon cycling. The impedances of these cells will be

followed as the life testing proceeds.

Impedance testing appears to be a very powerful method for study and

comparison of cells and electrodes, but any comparison must take into
account differences in cycling and storage history. The measurements can

aid in our understanding of the phenomena that take place on standing and

cycling and promise to be useful in modeling the discharge of Ni
electrodes.

i)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

REFERENCES

Zimmerman, M.R. Martinelli, M.C. Janecki, and C.C. Badcock, J.

Electrochem. Soc., 12___99,289 (1982).

R.T. Barton, M. Hughes, S.A.G.R. Karunathilaka, and N.A. Hampson, J.

Appl. Electrochem., I_55,399 (1985).

S.J. Lenhart, D.D. Macdonald, and B.G. Pound, J. Electrochem. Soc.,

135, 1063 (1985).

M.A. Reid, Extended Abstracts of the 174th Electrochemical Society
Meeting, Chicago, IL, Oct. 1988, p. 122.

M. Manzo, J. Power Sources, to be published.

M.A. Reid, Electrochim. Acta, to be published.

M.A. Reid, J. Power Sources, to be published.

W.M. Latimer, Oxidation Potentials, Second Edition, Prentice-Hall,
1952.

A.J. Bard and L.R. Faulkner, Electrochemical Methods, Wiley, 1980,
pp. 316 ff.

R. Barnard, G.T. Crickmore, J.A. Lee, and F.L. Tye, J. Appl.
Electrochem., i0, 61 (1980).

D.M. MacArthur, J. Electrochem. Soc., 117, 422, 729 (1970).

R. Barnard and C.F. Randell, J. Appl. Electrochem., 12, 27 (1982).



13) H. Bode, K. Dehmelt, and J. Witte, Electrochim. Acta, I___I,1079,

(1966).

14) P.L. Loyselle, P.J. Karjala, and B.C. Cornilsen, in Proc. Symp. on
Electrochemical and Thermal Modeling of Battery, Fuel Cell, and
Photoenergy Conversion Systems, Editors, J.R. Selman and H.C. Maru,
The Electrochemical Society, Pennington, N.J., p. 114, (1986).

I0



Table I. Voltages of Ni/H 2 Cells and Ni/Cd cells Corresponding to
Various Half-cell Voltages.

COMPARABLE COMPARABLE

Ni vs NilH 2 CELL Ni/Cd CELL

Hg/HgO VOLTAGE VOLTAGE

0.200 1.i45 1.i07

0.255 i.200 1.i62

0.293 1.238 i.200

0.330 i.275 1.237

Table II. Impedance Parameters of Ni/H 2 Cells from Two Manufacturers
Being Tested for Space Station Freedom. Cell Voltage is
1.275 V. Measurements Taken after Acceptance Testing.

MANUFACTURER 1 (65 AH CELLS)
CELL NUMBER 7 8 9 iO ii i2

R ohmic [mOhm) i .6i i.28 i.07 i. t3 i.63 i. t3

R kin (mOhm) i.4 i.3 i.5 i.7 i.7 2.2

Slope CmOhmsec"t/2) 0. i4 O. lO 0. iO 0. i2 0. i2 O. i3

Capacitance (F) 27500 27000 27000 23000 26000 22000

MANUFACTURER 2 (50 AH CELLS)
CELL NUMBER i9 20 21 22 23 24

R ohmic (mOhm)

R kin (mOhm)

Slope (mOhm sec"I/2)

Capacitance (F)

i.i5 i.06 i.50 i.52

25 25 32 32
0.66 0.82 0.60 0.49

30 20 30 35

NCapacitances ape derived from simplistic analysis of data.
More sophisticated analyses are under way. These numbers ape given
for comparison between electrodes, as a flgure-of-merlt, and may
not represent real capacitances.

]]



Table lll.lmpedance Parameters of Two Lots of Ni/H 2 Cells Being
Tested for Space Station Freedom after Acceptance Testing

and after About 500 LEO Cycles at 35_ DOD.

MANUFACTURER i, 1.275 V

AFTER ACCEPTANCE 500 CYCLES

R ohmic (mOhm) 1.31 1.32

R kin (mOhm) 1.6 0.6B

Slope, =ohm sec"ua 0.12 0.i2

AVERAGE OF 6 CELLS

MANUFACTURER 2, 1.200 V

AFTER ACCEPTANCE 500 CYCLES

R ohmic (mOhm) i.2B 1.29

R kin (mOhm) 97 202

Slope, =Ohm sec"I/2 6.0 ii.9

AVERAGE OF 5 CELLS

12
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Fig. 6- Parallel resistances and Warburg slopes at 1.200 V for the
50 AH Ni/Cd batteries as functions of cycle life. Values
are for the complete cell and are not normalized.
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Fig. 7- Parallel resistances and Warburg slopes as functions of
cycle life at 1.200 V cell voltage for Ni electrodes of the
50 AH Ni/Cd batteries. The case was used as the reference
electrode.

l_. IS.

• tM' $4,

_' ¢ ,_.

iiO' m iO'

._ ioo.

J !i
_ °0

_s
.J

_- tO

i._ _ iooo iSOO _00 SO0 _0_ 15o0

CYCLES CYCLES

m _ 1.07 +,m _ L13 I _ LOT I_ _ Li)

Fig. 8-Parallel resistances and Warburg slopes as functions of
cycle life at 1.200 V cell voltage for Cd electrodes of the
50 AH Ni/Cd batteries. The case was used as the reference
el ectrode.

IR_CF.DING PAGE BLANK NOT FILMED

15

INTENTIONAI_LYBI.ANII



Report Documentation Page
NationatAeronautics and
Space Adrninislration

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM- 102438

4. Title and Subtitle 5. Report Date

Changes in Impedance of Ni Electrodes Upon Standing and Cycling

7. Author(s)

Margaret A. Reid

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

6. Performing Organization Code

8. Performing Organization Report No.

E-5207

10. Work Unit No.

506-41-21

11. Contract or Grani No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Prepared for the 1989 Fall Meeting of the Electrochemical Society, Hollywood, Florida, October 15-20, 1989.

16. Abstract

Impedances of Ni electrodes vary with many factors including voltage, cycling, and manufacturer. However,
results from Ni/H2 cells being te_ted for Space Station Freedom show that consistent results are obtained within a

group of cells from the same manufacturer if the ceils are cycled and stored in the same manner. Impedance

changes with storage and cycling are being investigated. Impedances are low in the fully charged state but rise

abruptly by several orders of magnitude at a voltage corresponding to a very low state-of-charge. After standing
for several months, this increase occurred at a higher voltage, consistent with an increase in structural order

during storage which hinders diffusion of protons and reduces high rate capacity. Early measurements on the

effects of cycling on Ni/H2 cells being tested for Space Station Freedom show differences between cells from
different manufacturers.

17. Key Words (Suggested by Author(s))

Nickel electrodes

Nickel hydrogen batteries
Nickel cadmium batteries

Impedance

18. Distribution Statement

Unclassified- Unlimited

Subject Category 44

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages

Unclassified Unclassified 16

NASA FORM 1626 OCT 86 *For sale by the National Technical Information Service, Springfield, Virginia 22161

22. Price*

A03


